1) (35 points)

Let us consider a clamped cubic spline interpolating the data points $\left(x_{i}, y_{i}\right), i=1,2,3$.
Denote the cubic polynomials S_{1} and S_{2} for each of the subintervals $\left[x_{1}, x_{2}\right]$ and $\left[x_{2}, x_{3}\right]$. Define

$$
\begin{gathered}
S_{1}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}, \\
S_{2}(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3} .
\end{gathered}
$$

(i) Write down the conditions to construct the clamped cubic spline.
(ii) Construct the system in a matrix form to solve the coefficients $a_{0}, a_{1}, \ldots, b_{0}, \ldots, b_{3}$.
(iii) If we want to use natural cubic spline, what will change? Explain the difference.
2) (40 points)

The divided difference table corresponds to the data is given as below. (Note: Use 7-digit rounding method.)
a) Find the missing entries in the table. Show all your calculations.

x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i-1}, x_{i}\right]$	$f\left[x_{i-2}, x_{i-1}, x_{i}\right]$	$f\left[x_{i-3}, x_{i-2}, x_{i-1}, x_{i}\right]$	$f\left[x_{i-4}, x_{i-3}, x_{i-2}, x_{i-1}, x_{i}\right]$
0.0	1.0000000				
1.0	0.5403023	$?$			
2.0	$?$	-0.9564491	$?$	$?$	$?$
3.0	-0.9899925	-0.5738457	0.1913018	$?$	
4.0	-0.6536436	$?$	0.4550973	$?$	

b) We want to approximate $f(0.05), f(3.8)$ and $f(2.2)$. Approximate these points in a best way.
3) (25 points) Use the formulas given in section 4.1 to determine, as accurately as possible, approximations for each missing entry in the following table:

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
-3.0	9.367879	$?$	
-2.8	8.233241	-5.468933	
-2.6	7.180350	$?$	$?$
-2.4	6.209329	-4.650223	
-2.2	5.320305	-4.239911	

