MCS 282 Final Examination, Spring Semester 2010
Department of Mathematics \& Computer Science, Çankaya University

1) (25 points)

In calculus, we learn that $e=\lim _{h \rightarrow 0}(1+h)^{1 / h}$.
(i) Compute approximations to e using the formula $N(h)=(1+h)^{1 / h}$ for $h=0.04,0.02$ and 0.01 .
(ii) Use extrapolation on the approximations, assuming the constants $K_{1}, K_{2} \ldots$ exist with $e=N(h)+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\ldots$ to produce an $O\left(h^{3}\right)$ approximation to e where $h=0.04$.
(iii) Note that, e also equals to as follows:

$$
e=\lim _{h \rightarrow 0}\left(\frac{2+h}{2-h}\right)^{1 / h} .
$$

Let $N(h)=\left(\frac{2+h}{2-h}\right)^{1 / h}$. Show that $N(h)=N(-h)$.
(Note: In your calculations use 5-digit rounding)
2) (20 points)

Consider the integration of the function $f(x)=1+x e^{x}-e^{2 x}$ over $[a, b]=[0,1]$. Use exactly 5 function evaluations to compare the results from Composite Simpson's rule, Composite Midpoint rule and Boole's rule. Calculate the exact value and find the absolute errors. (In your calculations use 4-digit rounding)
3) (10 points)

Fill in the missing entries in the table. Write down all your explanations explicitly. Root finding:

Method	Iteration equation	Assumptions
Fixed Point	$?(1)$	$?(2)$
$?(3)$	$p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}$	$?(4)$
Secant	$?(5)$	$f^{\prime}\left(p_{n-1}\right) \approx \frac{f\left(p_{n-1}\right)-f\left(p_{n-2}\right)}{p_{n-1}-p_{n-2}}$

Interpolation: Assume we have $n+1$ distinct nodes, $x_{0}, x_{1}, \ldots, x_{n}$ in $[a, b]$. Suppose that $f \in$
 the following methods in the table. Fill in the missing entries.

Method	Number of Conditions	Error Term
Lagrange	$?(1)$	$\frac{f^{(n+1)(c(x))}}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$
Divided Difference	$n+1$	$?(2)$
Cubic Spline	$?(3)$	-
$?(4)$	$?(5)$	$\frac{f^{(2 n+2)(c(x))}}{(2 n+2)!}\left(x-x_{0}\right)^{2}\left(x-x_{1}\right)^{2} \cdots\left(x-x_{n}\right)^{2}$

4) (15 points) Find the constants c_{0}, c_{1}, x_{1} so that the quadrature formula

$$
\int_{0}^{1} f(x) d x=c_{0} f(0)+c_{1} f\left(x_{1}\right)
$$

has the highest possible degree of precision.
5) (15 points) A natural cubic spline S is defined by

$$
S(x)= \begin{cases}S_{0}(x)=1+B(x-1)-D(x-1)^{3} & \text { if } 1 \leq x<2 \\ S_{1}(x)=1+b(x-2)-\frac{3}{4}(x-2)^{2}+d(x-2)^{3} & \text { if } 2 \leq x \leq 3\end{cases}
$$

If S interpolates the data $(1,1),(2,1)$ and $(3,0)$, find the constants B, D, b, d.
6) (15 points) Show that

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}, x\right]=\frac{f^{(n+1)}(c(x))}{(n+1)!}
$$

for some $c(x)$. [Hint: Consider the interpolation polynomial of degree $n+1$ on $x_{0}, x_{1}, \ldots, x_{n}, x$.]

