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Throughout this chapter, F will denote a field. The references [Lay03], [Leo02], and [SIF00] are good
sources for more detail about much of the material in this chapter. They discuss primarily the field of real
numbers, but the proofs are usually valid for any field.

1.1 Vector Spaces

Vectors are used in many applications. They often represent quantities that have both direction and
magnitude, such as velocity or position, and can appear as functions, as n-tuples of scalars, or in other
disguises. Whenever objects can be added and multiplied by scalars, they may be elements of some vector
space. In this section, we formulate a general definition of vector space and establish its basic properties.
An element of a field, such as the real numbers or the complex numbers, is called a scalar to distinguish it
from a vector.

Definitions:

A vector space over F is a set V together with a function V × V → V called addition, denoted (x,y) →
x + y, and a function F × V → V called scalar multiplication and denoted (c ,x) → cx, which satisfy
the following axioms:

1. (Commutativity) For each x, y ∈ V, x + y = y + x.
2. (Associativity) For each x, y, z ∈ V, (x + y) + z = x + (y + z).
3. (Additive identity) There exists a zero vector in V, denoted 0, such that 0 + x = x for each x ∈ V.

4. (Additive inverse) For each x ∈ V, there exists −x ∈ V such that (−x) + x = 0.
5. (Distributivity) For each a ∈ F and x, y ∈ V, a(x + y) = ax + ay.
6. (Distributivity) For each a , b ∈ F and x ∈ V, (a + b) x = ax + bx.
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7. (Associativity) For each a , b ∈ F and x ∈ V, (ab) x = a(bx).
8. For each x ∈ V, 1x = x.

The properties that for all x, y ∈ V, and a ∈ F , x + y ∈ V and ax ∈ V, are called closure under addition
and closure under scalar multiplication, respectively. The elements of a vector space V are called vectors.
A vector space is called real if F = R, complex if F = C.

If n is a positive integer, F n denotes the set of all ordered n-tuples (written as columns). These are

sometimes written instead as rows [x1 · · · xn] or (x1, . . . , xn). For x =

⎡

⎢
⎣

x1

...
xn

⎤

⎥
⎦, y =

⎡

⎢
⎣

y1

...
yn

⎤

⎥
⎦∈ F n and c ∈ F ,

define addition and scalar multiplication coordinate-wise: x + y =

⎡

⎢
⎣

x1 + y1

...
xn + yn

⎤

⎥
⎦ and cx =

⎡

⎢
⎣

c x1

...
c xn

⎤

⎥
⎦. Let 0

denote the n-tuple of zeros. For x ∈ F n, x j is called the jth coordinate of x.
A subspace of vector space V over field F is a subset of V, which is itself a vector space over F when

the addition and scalar multiplication of V are used. If S1 and S2 are subsets of vector space V, define
S1 + S2 = {x + y : x ∈ S1 and y ∈ S2}.

Facts:

Let V be a vector space over F .

1. F n is a vector space over F .
2. [FIS03, pp. 11–12] (Basic properties of a vector space):

� The vector 0 is the only additive identity in V.
� For each x ∈ V, −x is the only additive inverse for x in V.
� For each x ∈ V, −x = (−1)x.
� If a ∈ F and x ∈ V, then ax = 0 if and only if a = 0 or x = 0.
� (Cancellation) If x, y, z ∈ V and x + y = x + z, then y = z.

3. [FIS03, pp. 16–17] Let W be a subset of V. The following are equivalent:
� W is a subspace of V.
� W is nonempty and closed under addition and scalar multiplication.
� 0 ∈ W and for any x, y ∈ W and a , b ∈ F , ax + by ∈ W.

4. For any vector space V, {0} and V itself are subspaces of V.

5. [FIS03, p. 19] The intersection of any nonempty collection of subspaces of V is a subspace of V.

6. [FIS03, p. 22] Let W1 and W2 be subspaces of V . Then W1 + W2 is a subspace of V containing W1

and W2. It is the smallest subspace that contains them in the sense that any subspace that contains
both W1 and W2 must contain W1 + W2.

Examples:

1. The set R
n of all ordered n-tuples of real numbers is a vector space over R, and the set C

n of

all ordered n-tuples of complex numbers is a vector space over C. For instance, x =
⎡

⎣
3
0

−1

⎤

⎦ and

y =
⎡

⎣
2i
4

2 − 3i

⎤

⎦ are elements of C
3; x + y =

⎡

⎣
3 + 2i

4
1 − 3i

⎤

⎦, −y =
⎡

⎣
−2i
−4

−2 + 3i

⎤

⎦, and iy =
⎡

⎣
−2
4i

3 + 2i

⎤

⎦.

2. Notice R
n is a subset of C

n but not a subspace of C
n, since R

n is not closed under multiplication
by nonreal numbers.
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3. The vector spaces R, R
2, and R

3 are the usual Euclidean spaces of analytic geometry. There are
three types of subspaces of R

2: {0}, a line through the origin, and R
2 itself. There are four types of

subspaces ofR3:{0}, a line through the origin, a plane through the origin, andR
3 itself. For instance,

let v = (5, −1, −1) and w = (0, 3, −2). The lines W1 = {s v : s ∈ R} and W2 = {s w : s ∈ R} are
subspaces of R

3
. The subspace W1 + W2 = {s v + t w : s , t ∈ R} is a plane. The set {s v + w: s ∈ R}

is a line parallel to W1, but is not a subspace. (For more information on geometry, see Chapter 65.)
4. Let F [x] be the set of all polynomials in the single variable x , with coefficients from F . To add

polynomials, add coefficients of like powers; to multiply a polynomial by an element of F , multi-
ply each coefficient by that scalar. With these operations, F [x] is a vector space over F . The zero
polynomial z, with all coefficients 0, is the additive identity of F [x]. For f ∈ F [x], the function
− f defined by − f (x) = (−1) f (x) is the additive inverse of f.

5. In F [x], the constant polynomials have degree 0. For n > 0, the polynomials with highest power
term xn are said to have degree n. For a nonnegative integer n, let F [x ; n] be the subset of F [x]
consisting of all polynomials of degree n or less. Then F [x ; n] is a subspace of F [x].

6. When n > 0, the set of all polynomials of degree exactly n is not a subspace of F [x] because it is
not closed under addition or scalar multiplication. The set of all polynomials in R[x] with rational
coefficients is not a subspace of R[x] because it is not closed under scalar multiplication.

7. Let V be the set of all infinite sequences (a1, a2, a3, . . .), where each a j ∈ F . Define addition and
scalar multiplication coordinate-wise. Then V is a vector space over F .

8. Let X be a nonempty set and let F(X, F ) be the set of all functions f : X → F . Let f, g ∈ F(X, F )
and define f + g and cf pointwise, as ( f + g )(x) = f (x) + g (x) and (cf )(x) = cf (x) for all x ∈ X.

With these operations, F(X, F ) is a vector space over F . The zero function is the additive identity
and (−1) f = − f, the additive inverse of f.

9. Let X be a nonempty subset of Rn
. The set C (X) of all continuous functions f : X → R is a subspace

of F(X, R). The set D(X) of all differentiable functions f : X → R is a subspace of C(X) and also
of F(X, R).

1.2 Matrices

Matrices are rectangular arrays of scalars that are used in a great variety of ways, such as to solve linear
systems, model linear behavior, and approximate nonlinear behavior. They are standard tools in almost
every discipline, from sociology to physics and engineering.

Definitions:

An m × p matrix over F is an m × p rectangular array A =

⎡

⎢
⎣

a11 · · · a1p
... · · · ...

am1 · · · amp

⎤

⎥
⎦, with entries from F. The

notation A = [aij] that displays a typical entry is also used. The element aij of the matrix A is called the (i, j )
entry of A and can also be denoted (A)ij. The shape (or size) of A is m × p, and A is square if m = p; in
this case, m is also called the size of A. Two matrices A = [aij] and B = [bij] are said to be equal if they have
the same shape and aij = bij for all i, j. Let A = [aij] and B = [bij] be m× p matrices, and let c be a scalar.
Define addition and scalar multiplication on the set of all m × p matrices over F entrywise, as A + B =
[aij + bij] and cA = [caij]. The set of all m × p matrices over F with these operations is denoted F m×p .

If A is m × p , row i is [ai1, . . . , aip] and column j is

⎡

⎢
⎣

a1j
...

amj

⎤

⎥
⎦. These are called a row vector and

a column vector respectively, and they belong to F n×1 and F 1×n, respectively. The elements of F n are
identified with the elements of F n×1 (or sometimes with the elements of F 1×n). Let 0mp denote the m × p
matrix of zeros, often shortened to 0 when the size is clear. Define −A = (−1)A.
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Let A = [a1 . . . ap] ∈ F m×p, where a j is the j th column of A, and let b =

⎡

⎢
⎣

b1

...
b p

⎤

⎥
⎦ ∈ F p×1. The

matrix–vector product of A and b is Ab = b1a1 + · · · + b pap . Notice Ab is m × 1.

If A ∈ F m×p and C = [c1 . . . cn] ∈ F p×n, define the matrix product of A and C as AC =
[Ac1 . . . Acn]. Notice AC is m × n.

Square matrices A and B commute if AB = BA. When i = j, aii is a diagonal entry of A and the set of
all its diagonal entries is the main diagonal of A. When i �= j, aij is an off-diagonal entry.

The trace of A is the sum of all the diagonal entries of A, tr A = ∑n
i=1 aii.

A matrix A = [aij] is diagonal if aij = 0 whenever i �= j, lower triangular if aij = 0 whenever i < j,
and upper triangular if aij = 0 whenever i > j. A unit triangular matrix is a lower or upper triangular
matrix in which each diagonal entry is 1.

The identity matrix In, often shortened to I when the size is clear, is the n × n matrix with main
diagonal entries 1 and other entries 0.

A scalar matrix is a scalar multiple of the identity matrix.
A permutation matrix is one whose rows are some rearrangement of the rows of an identity matrix.
Let A ∈ F m×p . The transpose of A, denoted AT , is the p × m matrix whose (i, j ) entry is the ( j, i)

entry of A.

The square matrix A is symmetric if AT = A and skew-symmetric if AT = −A.

When F = C, that is, when A has complex entries, the Hermitian adjoint of A is its conjugate transpose,
A∗ = ĀT ; that is, the (i, j ) entry of A∗ is aji. Some authors, such as [Leo02], write AH instead of A∗.

The square matrix A is Hermitian if A∗ = A and skew-Hermitian if A∗ = −A.

Let α be a nonempty set of row indices and β a nonempty set of column indices. A submatrix of A is
a matrix A[α, β] obtained by choosing the entries of A, which lie in rows α and columns β. A principal
submatrix of A is a submatrix of the form A[α, α]. A leading principal submatrix of A is one of the form
A[{1, . . . , k}, {1, . . . , k}].

Facts:

1. [SIF00, p. 5] F m×p is a vector space over F . That is, if 0, A, B , C ∈ F m×p , and c ,d ∈ F , then:
� A + B = B + A
� (A + B) + C = A + (B + C )
� A+ 0 = 0 + A = A
� A + (−A) = (−A) + A = 0
� c(A + B) = cA + cB
� (c + d)A = cA + dA
� (cd) A = c(dA)
� 1A = A

2. If A ∈ F m×p and C ∈ F p×n, the (i, j ) entry of AC is (AC)ij = ∑p
k=1 aikakj. This is the matrix

product of row i of A and column j of C .

3. [SIF00, p. 88] Let c ∈ F , let A and B be matrices over F , let I denote an identity matrix, and
assume the shapes allow the following sums and products to be calculated. Then:
� AI = IA = A
� A0 = 0 and 0A = 0
� A(BC) = (AB)C
� A(B + C ) = AB + AC
� (A + B)C = AC + BC
� c(AB) = A(cB) = (cA)B for any scalar c
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4. [SIF00, p. 5 and p. 20] Let c ∈ F , let A and B be matrices over F , and assume the shapes allow the
following sums and products to be calculated. Then:
� (AT )T = A
� (A + B)T = AT + B T

� (cA)T = cAT

� (AB)T = B T AT

5. [Leo02, pp. 321–323] Let c ∈ C, let A and B be matrices over C, and assume the shapes allow the
following sums and products to be calculated. Then:
� (A∗)∗ = A
� (A + B)∗ = A∗ + B∗
� (c A)∗ = c̄ A∗
� (AB)∗ = B∗ A∗

6. If A and B are n × n and upper (lower) triangular, then AB is upper (lower) triangular.

Examples:

1. Let A =
[

1 2 3
4 5 6

]

and b =
⎡

⎣
7
8

−9

⎤

⎦. By definition, Ab = 7

[
1
4

]

+ 8

[
2
5

]

− 9

[
3
6

]

=
[−4

14

]

. Hand

calculation of Ab can be done more quickly using Fact 2: Ab =
[

1 · 7 + 2 · 8 − 3 · 9
4 · 7 + 5 · 8 − 6 · 9

]

=
[−4

14

]

.

2. Let A =
[

1 −3 4
2 0 8

]

, B =
[−3 8 0

1 2 −5

]

, and C =
⎡

⎣
1 −1 8
1 3 0
1 2 −2

⎤

⎦. Then A + B =
[−2 5 4

3 2 3

]

and 2A =
[

2 −6 8
4 0 16

]

. The matrices A + C , BA, and AB are not defined, but

AC =
⎡

⎣A

⎡

⎣
1
1
1

⎤

⎦ A

⎡

⎣
−1

3
2

⎤

⎦ A

⎡

⎣
8
0

−2

⎤

⎦

⎤

⎦ =
[

2 −2 0
10 14 0

]

.

3. Even when the shapes of A and B allow both AB and BA to be calculated, AB and BA are not usually

equal. For instance, let A =
[

1 0
0 2

]

and B =
[

a b
c d

]

; then AB =
[

a b
2c 2d

]

and BA =
[

a 2b
c 2d

]

,

which will be equal only if b = c = 0.

4. The product of matrices can be a zero matrix even if neither has any zero entries. For example, if

A =
[

1 −1
2 −2

]

and B =
[

1 1
1 1

]

, then AB =
[

0 0
0 0

]

. Notice that BA is also defined but has no

zero entries: BA =
[

3 −3
3 −3

]

.

5. The matrices

⎡

⎣
1 0 0
0 0 0
0 0 −9

⎤

⎦ and

[
1 0 0
0 −3 0

]

are diagonal,

⎡

⎣
1 0 0
2 0 0
1 5 −9

⎤

⎦ and

[
1 0 0
2 −3 0

]

are

lower triangular, and

⎡

⎣
1 −4 7
0 1 2
0 0 −9

⎤

⎦and

⎡

⎢
⎢
⎣

1 2 3
0 4 5
0 0 0
0 0 0

⎤

⎥
⎥
⎦are upper triangular. The matrix

⎡

⎣
1 0 0
2 1 0
1 5 1

⎤

⎦

is unit lower triangular, and its transpose is unit upper triangular.
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6. Examples of permutation matrices include every identity matrix,

[
0 1
1 0

]

,

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦, and

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦.

7. Let A =
[

1 + i −3i 4
1 + 2i 5i 0

]

. Then AT =
⎡

⎣
1 + i 1 + 2i
−3i 5i

4 0

⎤

⎦ and A∗ =
⎡

⎣
1 − i 1 − 2i

3i −5i
4 0

⎤

⎦.

8. The matrices

⎡

⎣
1 2 3
2 4 5
3 5 6

⎤

⎦ and

⎡

⎣
i 2 3 + 2i
2 4 − i 5i

3 + 2i 5i 6

⎤

⎦ are symmetric.

9. The matrices

⎡

⎣
0 2 3

−2 0 5
−3 −5 0

⎤

⎦ and

⎡

⎣
0 2 3 + 2i

−2 0 −5
−3 − 2i 5 0

⎤

⎦ are skew-symmetric.

10. The matrix

⎡

⎣
1 2 + i 1 − 3i

2 − i 0 1
1 + 3i 1 6

⎤

⎦ is Hermitian, and any real symmetric matrix, such as

⎡

⎣
4 2 3
2 0 5
3 5 −1

⎤

⎦, is also Hermitian.

11. The matrix

⎡

⎣
i 2 −3 + 2i

−2 4i 5
3 + 2i −5 0

⎤

⎦ is skew-Hermitian, and any real skew-symmetric matrix,

such as

⎡

⎣
0 2 −3

−2 0 5
3 −5 0

⎤

⎦ , is also skew-Hermitian.

12. Let A =

⎡

⎢
⎢
⎣

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤

⎥
⎥
⎦ . Row 1 of A is [1 2 3 4], column 3 is

⎡

⎢
⎢
⎣

3
7

11
15

⎤

⎥
⎥
⎦ , and the submatrix

in rows {1, 2, 4} and columns {2, 3, 4} is A[{1, 2, 4}, {2, 3, 4}] =
⎡

⎣
2 3 4
6 7 8

14 15 16

⎤

⎦ . A principal

submatrix of A is A[{1, 2, 4}, {1, 2, 4}] =
⎡

⎣
1 2 4
5 6 8

13 14 16

⎤

⎦. The leading principal submatrices of

A are [1],

[
1 2
5 6

]

,

⎡

⎣
1 2 3
5 6 7
9 10 11

⎤

⎦, and A itself.
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1.3 Gaussian and Gauss--Jordan Elimination

Definitions:

Let A be a matrix with m rows.
When a row of A is not zero, its first nonzero entry is the leading entry of the row. The matrix A is in

row echelon form (REF) when the following two conditions are met:

1. Any zero rows are below all nonzero rows.
2. For each nonzero row i, i ≤ m − 1, either row i + 1 is zero or the leading entry of row i + 1 is in a

column to the right of the column of the leading entry in row i.

The matrix A is in reduced row echelon form (RREF) if it is in row echelon form and the following
third condition is also met:

3. If aik is the leading entry in row i, then aik = 1, and every entry of column k other than aik is zero.

Elementary row operations on a matrix are operations of the following types:

1. Add a multiple of one row to a different row.
2. Exchange two different rows.
3. Multiply one row by a nonzero scalar.

The matrix A is row equivalent to the matrix B if there is a sequence of elementary row operations
that transforms A into B . The reduced row echelon form of A, RREF(A), is the matrix in reduced row
echelon form that is row equivalent to A. A row echelon form of A is any matrix in row echelon form
that is row equivalent to A. The rank of A, denoted rank A or rank(A), is the number of leading entries
in RREF(A). If A is in row echelon form, the positions of the leading entries in its nonzero rows are called
pivot positions and the entries in those positions are called pivots. A column (row) that contains a pivot
position is a pivot column (pivot row).

Gaussian Elimination is a process that uses elementary row operations in a particular way to change,
or reduce, a matrix to row echelon form. Gauss–Jordan Elimination is a process that uses elementary row
operations in a particular way to reduce a matrix to RREF. See Algorithm 1 below.

Facts:

Let A ∈ F m×p .

1. [Lay03, p. 15] The reduced row echelon form of A, RREF(A), exists and is unique.
2. A matrix in REF or RREF is upper triangular.
3. Every elementary row operation is reversible by an elementary row operation of the same type.
4. If A is row equivalent to B , then B is row equivalent to A.

5. If A is row equivalent to B , then RREF(A) = RREF(B) and rank A = rank B .

6. The number of nonzero rows in any row echelon form of A equals rank A.

7. If B is any row echelon form of A, the positions of the leading entries in B are the same as the
positions of the leading entries of RREF(A).

8. [Lay03, pp. 17–20] (Gaussian and Gauss–Jordan Elimination Algorithms) When one or more piv-
ots are relatively small, using the algorithms below in floating point arithmetic can yield inaccurate
results. (See Chapter 38 for more accurate variations of them, and Chapter 75 for information on
professional software implementations of such variations.)
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Algorithm 1. Gaussian and Gauss-Jordan Elimination

Let A ∈ F m×p . Steps 1 to 4 below do Gaussian Elimination, reducing A to a matrix that is in row
echelon form. Steps 1 to 6 do Gauss–Jordan Elimination, reducing A to RREF(A).

1. Let U = A and r = 1. If U = 0, U is in RREF.
2. If U �= 0, search the submatrix of U in rows r to m to find its first nonzero column, k, and

the first nonzero entry, aik , in this column. If i > r, exchange rows r and i in U, thus getting a
nonzero entry in position (r, k). Let U be the matrix created by this row exchange.

3. Add multiples of row r to the rows below it, to create zeros in column k below row r. Let U
denote the new matrix.

4. If either r = m − 1 or rows r + 1, . . . , m are all zero, U is now in REF. Otherwise, let r = r + 1
and repeat steps 2, 3, and 4.

5. Let k1, . . . , ks be the pivot columns of U, so (1, k1), . . . , (s , ks ) are the pivot positions. For i = s ,
s − 1, . . . , 2, add multiples of row i to the rows above it to create zeros in column ki above row i.

6. For i = 1, . . . , s , divide row s by its leading entry. The resulting matrix is RREF(A).

Examples:
1. The RREF of a zero matrix is itself, and its rank is zero.

2. Let A =
⎡

⎣
1 3 4 −8
0 0 2 4
0 0 0 0

⎤

⎦ and B =
⎡

⎣
1 3 4 −8
0 0 0 4
0 0 1 0

⎤

⎦. Both are upper triangular, but A is in REF

and B is not. Use Gauss–Jordan Elimination to calculate RREF(A) and RREF(B).

For A, add (−2)(row 2) to row 1 and multiply row 2 by 1
2 .This yields RREF(A) =

⎡

⎣
1 3 0 −16
0 0 1 2
0 0 0 0

⎤

⎦.

For B , exchange rows 2 and 3 to get

⎡

⎣
1 3 4 −8
0 0 1 0
0 0 0 4

⎤

⎦, which is in REF. Then add 2(row 3) to

row 1 to get a new matrix. In this new matrix, add (−4)(row 2) to row 1, and multiply row 3 by 1
4 .

This yields RREF(B) =
⎡

⎣
1 3 0 0
0 0 1 0
0 0 0 1

⎤

⎦.

Observe that rank (A) = 2 and rank (B) = 3.

3. Apply Gauss–Jordan Elimination to A =

⎡

⎢
⎢
⎣

2 6 4 4
−4 −12 −8 −7

0 0 −1 −4
1 3 1 −2

⎤

⎥
⎥
⎦.

Step 1. Let U (1) = A and r = 1.

Step 2. No row exchange is needed since a11 �= 0.

Step 3. Add (2)(row 1) to row 2, and (− 1
2 )(row 1) to row 4 to get U (2) =

⎡

⎢
⎢
⎣

2 6 4 4
0 0 0 1
0 0 1 4
0 0 −1 −4

⎤

⎥
⎥
⎦.

Step 4. The submatrix in rows 2, 3, 4 is not zero, so let r = 2 and return to Step 2.
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Step 2. Search the submatrix in rows 2 to 4 of U (2) to see that its first nonzero column is column 3
and the first nonzero entry in this column is in row 3 of U (2). Exchange rows 2 and 3 in U (2) to get

U (3) =

⎡

⎢
⎢
⎣

2 6 4 4
0 0 1 4
0 0 0 1
0 0 −1 −4

⎤

⎥
⎥
⎦.

Step 3. Add row 2 to row 4 in U (3) to get U (4) =

⎡

⎢
⎢
⎣

2 6 4 4
0 0 1 4
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦.

Step 4. Now U (4) is in REF, so Gaussian Elimination is finished.
Step 5. The pivot positions are (1, 1), (2, 3), and (3, 4). Add –4(row 3) to rows 1 and 2 of U (4) to get

U (5) =

⎡

⎢
⎢
⎣

2 6 4 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦. Add –4(row 2) of U (5) to row 1 of U (5) to get U (6) =

⎡

⎢
⎢
⎣

2 6 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦.

Step 6. Multiply row 1 of U (6) by 1
2 , obtaining U (7) =

⎡

⎢
⎢
⎣

1 3 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦, which is RREF(A).

1.4 Systems of Linear Equations

Definitions:

A linear equation is an equation of the form a1x1 +· · ·+a p xp = b where a1, . . . , a p , b ∈ F and x1, . . . , xp

are variables. The scalars a j are coefficients and the scalar b is the constant term.
A system of linear equations, or linear system, is a set of one or more linear equations in the same

variables, such as

a11x1 + · · · + a1p xp = b1

a21x2 + · · · + a2p xp = b2

· · ·
am1x1 + · · · + ampxp = bm

. A solution of the system is a p-tuple (c1, . . . , c p) such that

letting x j = c j for each j satisfies every equation. The solution set of the system is the set of all solutions. A
system is consistent if there exists at least one solution; otherwise it is inconsistent. Systems are equivalent
if they have the same solution set. If b j = 0 for all j, the system is homogeneous. A formula that describes
a general vector in the solution set is called the general solution.

For the system

a11x1 + · · · + a1p xp = b1

a21x2 + · · · + a2p xp = b2

· · ·
am1x1 + · · · + ampxp = bm

, the m × p matrix A =

⎡

⎢
⎣

a11 · · · a1p

... · · · ...
am1 · · · amp

⎤

⎥
⎦ is the coefficient

matrix, b =

⎡

⎢
⎣

b1

...
bm

⎤

⎥
⎦ is the constant vector, and x =

⎡

⎢
⎣

x1

...
xp

⎤

⎥
⎦ is the unknown vector. The m × (p + 1) matrix

[A b] is the augmented matrix of the system. It is customary to identify the system of linear equations

with the matrix-vector equation Ax = b. This is valid because a column vector x =

⎡

⎢
⎣

c1

...
c p

⎤

⎥
⎦ satisfies Ax =

b if and only if (c1, . . . , c p) is a solution of the linear system.
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Observe that the coefficients of xk are stored in column k of A. If Ax = b is equivalent to C x = d and
column k of C is a pivot column, then xk is a basic variable; otherwise, xk is a free variable.

Facts:

Let Ax = b be a linear system, where A is an m × p matrix.

1. [SIF00, pp. 27, 118] If elementary row operations are done to the augmented matrix [A b], obtaining
a new matrix [C d], the new system C x = d is equivalent to Ax = b.

2. [SIF00, p. 24] There are three possibilities for the solution set of Ax = b: either there are no solutions
or there is exactly one solution or there is more than one solution. If there is more than one solution
and F is infinite (such as the real numbers or complex numbers), then there are infinitely many
solutions. If there is more than one solution and F is finite, then there are at least |F | solutions.

3. A homogeneous system is always consistent (the zero vector 0 is always a solution).
4. The set of solutions to the homogeneous system Ax = 0 is a subspace of the vector space F p .

5. [SIF00, p. 44] The system Ax = b is consistent if and only if b is not a pivot column of [A b], that
is, if and only if rank([A b]) = rank A.

6. [SIF00, pp. 29–32] Suppose Ax = b is consistent. It has a unique solution if and only there is a
pivot position in each column of A, that is, if and only if there are no free variables in the equation
Ax = b. Suppose there are t ≥ 1 nonpivot columns in A. Then there are t free variables in the
system. If RREF([A b]) = [C d], then the general solution of C x = d, hence of Ax = b, can
be written in the form x = s1v1 + · · · + st vt + w where v1, . . . , vt , w are column vectors and
s1, . . . , st are parameters, each representing one of the free variables. Thus x = w is one solution of
Ax = b. Also, the general solution of Ax = 0 is x = s1v1 + · · · + st vt .

7. [SIF00, pp. 29–32] (General solution of a linear system algorithm)

Algorithm 2: General Solution of a Linear System Ax = b

This algorithm is intended for small systems using rational arithmetic. It is not the most efficient and
when some pivots are relatively small, using this algorithm in floating point arithmetic can yield inaccu-
rate results. (For more accurate and efficient algorithms, see Chapter 38.) Let A ∈ F m×p and b ∈ F p×1.

1. Calculate RREF([A b]), obtaining [C d].
2. If there is a pivot in the last column of [C d], stop. There is no solution.
3. Assume the last column of [C d] is not a pivot column, and let d = [d1, . . . , dm]T .

a. If rank(C ) = p, so there exists a pivot in each column of C , then x = d is the unique solution
of the system.

b. Suppose rank C = r < p.

i. Write the system of linear equations represented by the nonzero rows of [C d]. In each
equation, the first nonzero term will be a basic variable, and each basic variable appears
in only one of these equations.

ii. Solve each equation for its basic variable and substitute parameter names for the p − r
free variables, say s1, . . . , s p−r . This is the general solution of C x = d and, thus, the
general solution of Ax = b.

iii. To write the general solution in vector form, as x = s1v(1)+· · ·+s p−r v(p−r )+w, let (i, ki )
be the i th pivot position of C .Define w ∈ F p by wki = di for i = 1, . . . , r, and all other en-
tries of w are 0. Let xu j be the j th free variable, and define the vectors v( j ) ∈ F p as follows:

For j = 1, . . . , p − r,
the u j -entry of v( j )is 1,
for i = 1, . . . , r, the ki -entry of v( j ) is −c iu j ,
and all other entries of v( j ) are 0.
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Examples:

1. The linear system
x1 + x2 = 0

−x1 + x2 = 0
has augmented matrix

[
1 1 0

−1 1 0

]

. The RREF of this is

[
1 0 0
0 1 0

]

,

which is the augmented matrix for the equivalent system
x1 = 0
x2 = 0

. Thus, the original system has a

unique solution in R
2, (0,0). In vector form the solution is x =

[
x1

x2

]

=
[

0
0

]

.

2. The system
x1 + x2 = 2
x1 − x2 = 0

has a unique solution in R
2, (1, 1), or x =

[
x1

x2

]

=
[

1
1

]

.

3. The system
x1 + x2 + x3 = 2

x2 + x3 = 2
x3 = 0

has a unique solution in R
3, (0, 2, 0), or x =

⎡

⎣
0
2
0

⎤

⎦ .

4. The system
x1 + x2 = 2

2x1 + 2x2 = 4
has infinitely many solutions in R

2
. The augmented matrix reduces

to

[
1 1 2
0 0 0

]

, so the only equation left is x1 + x2 = 2. Thus x1 is basic and x2 is free. Solving

for x1 and letting x2 = s gives x1 = −s + 2. Then the general solution is
x1 = −s + 2
x2 = s

, or all

vectors of the form (−s + 2, s ). Letting x =
[

x1

x2

]

, the vector form of the general solution is

x =
[−s + 2

s

]

= s

[−1
1

]

+
[

2
0

]

.

5. The system
x1 + x2 + x3 + x4 = 1

x2 + x3 − x4 = 3
has infinitely many solutions in R

4
. Its augmented matrix

[
1 1 1 1 1
0 1 1 −1 3

]

reduces to

[
1 0 0 2 −2
0 1 1 −1 3

]

. Thus, x1 and x2 are the basic variables, and

x3 and x4 are free. Write each of the new equations and solve it for its basic variable

to see
x1 = −2x4 − 2
x2 = −x3 + x4 + 3

. Let x3 = s1 and x4 = s2 to get the general solution

x1 = −2s2 − 2
x2 = −s1 + s2 + 3
x3 = s1

x4 = s2

, or x = s1v(1) + s2v(2) + w = s1

⎡

⎢
⎢
⎣

0
−1

1
0

⎤

⎥
⎥
⎦ + s2

⎡

⎢
⎢
⎣

−2
1
0
1

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

−2
3
0
0

⎤

⎥
⎥
⎦ .

6. These systems have no solutions:
x1 + x2 = 0
x1 + x2 = 1

and
x1 + x2 + x3 = 0
x1 − x2 − x3 = 0

x2 + x3 = 1
. This can be verified by

inspection, or by calculating the RREF of the augmented matrix of each and observing that each
has a pivot in its last column.

1.5 Matrix Inverses and Elementary Matrices

Invertibility is a strong and useful property. For example, when a linear system Ax = b has an invertible
coefficient matrix A, it has a unique solution. The various characterizations of invertibility in Fact 10
below are also quite useful. Throughout this section, F will denote a field.
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Definitions:

An n × n matrix A is invertible, or nonsingular, if there exists another n × n matrix B , called the inverse
of A, such that AB = BA = In. The inverse of A is denoted A−1 (cf. Fact 1). If no such B exists, A is not
invertible, or singular.

For an n×n matrix and a positive integer m, the mth power of A is Am = AA . . . A︸ ︷︷ ︸
m copies of A

. It is also convenient

to define A0 = In. If A is invertible, then A−m = (A−1)m.

An elementary matrix is a square matrix obtained by doing one elementary row operation to an identity
matrix. Thus, there are three types:

1. A multiple of one row of In has been added to a different row.
2. Two different rows of In have been exchanged.
3. One row of In has been multiplied by a nonzero scalar.

Facts:

1. [SIF00, pp. 114–116] If A ∈ F n×n is invertible, then its inverse is unique.
2. [SIF00, p. 128] (Method to compute A−1) Suppose A ∈ F n×n. Create the matrix [A In] and

calculate its RREF, which will be of the form [RREF(A)X]. If RREF(A) = In, then A is invertible
and X = A−1. If RREF(A) �= In, then A is not invertible. As with the Gaussian algorithm, this
method is theoretically correct, but more accurate and efficient methods for calculating inverses
are used in professional computer software. (See Chapter 75.)

3. [SIF00, pp. 114–116] If A ∈ F n×n is invertible, then A−1 is invertible and (A−1)−1 = A.

4. [SIF00, pp. 114–116] If A, B ∈ F n×n are invertible, then AB is invertible and (AB)−1 =
B−1 A−1.

5. [SIF00, pp. 114–116] If A ∈ F n×n is invertible, then AT is invertible and (AT )−1 = (A−1)T .

6. If A ∈ F n×n is invertible, then for each b ∈ F n×1, Ax = b has a unique solution, and it is x = A−1b.
7. [SIF00, p. 124] If A ∈ F n×n and there exists C ∈ F n×n such that either AC = In or CA = In, then

A is invertible and A−1 = C . That is, a left or right inverse for a square matrix is actually its unique
two-sided inverse.

8. [SIF00, p. 117] Let E be an elementary matrix obtained by doing one elementary row operation to
In. If that same row operation is done to an n × p matrix A, the result equals EA.

9. [SIF00, p. 117] An elementary matrix is invertible and its inverse is another elementary matrix of
the same type.

10. [SIF00, pp. 126] (Invertible Matrix Theorem) (See Section 2.5.) When A ∈ F n×n, the following
are equivalent:
� A is invertible.
� RREF(A) = In.
� Rank(A) = n.
� The only solution of Ax = 0 is x = 0.
� For every b ∈ F n×1, Ax = b has a unique solution.
� For every b ∈ F n×1, Ax = b has a solution.
� There exists B ∈ F n×n such that AB = In.
� There exists C ∈ F n×n such that CA = In.
� AT is invertible.
� There exist elementary matrices whose product equals A.

11. [SIF00, p. 148] and [Lay03, p.132] Let A ∈ F n×n be upper (lower) triangular. Then A is invertible
if and only if each diagonal entry is nonzero. If A is invertible, then A−1 is also upper (lower)
triangular, and the diagonal entries of A−1 are the reciprocals of those of A. In particular, if L is a
unit upper (lower) triangular matrix, then L−1 is also a unit upper (lower) triangular matrix.
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12. Matrix powers obey the usual rules of exponents, i.e., when As and At are defined for integers
s and t, then AsAt = As+t , (As )t = Ast.

Examples:

1. For any n, the identity matrix In is invertible and is its own inverse. If P is a permutation matrix,
it is invertible and P −1 = P T .

2. If A =
[

7 3
2 1

]

and B =
[

1 −3
−2 7

]

, then calculation shows AB = BA = I2, so A is invertible and

A−1 = B .

3. If A =
⎡

⎣
0.2 4 1

0 2 1
0 0 −1

⎤

⎦, then A−1 =
⎡

⎣
5 −10 −5
0 0.5 0.5
0 0 −1

⎤

⎦ , as can be verified by multiplication.

4. The matrix A =
[

1 2
2 4

]

is not invertible since RREF(A) �= I2. Alternatively, if B is any 2 × 2

matrix, AB is of the form

[
r s
2r 2s

]

, which cannot equal I2.

5. Let A be an n × n matrix A with a zero row (zero column). Then A is not invertible since
RREF(A) �= In. Alternatively, if B is any n × n matrix, AB has a zero row (BA has a zero column),
so B is not an inverse for A.

6. If A =
[

a b
c d

]

is any 2 × 2 matrix, then A is invertible if and only if ad − bc �= 0; further, when

ad − bc �= 0, A−1 = 1

ad − bc

[
d −b

−c a

]

. The scalar ad − bc is called the determinant of A.

(The determinant is defined for any n × n matrix in Section 4.1.) Using this formula, the matrix

A =
[

7 3
2 1

]

from Example 2 (above) has determinant 1, so A is invertible and A−1 =
[

1 −3
−2 7

]

,

as noted above. The matrix

[
1 2
2 4

]

from Example 3 (above) is not invertible since its determinant

is 0.

7. Let A =
⎡

⎣
1 3 0
2 7 0
1 1 1

⎤

⎦ . Then RREF([A In]) =
⎡

⎣
1 0 0 7 −3 0
0 1 0 −2 1 0
0 0 1 −5 2 1

⎤

⎦, so A−1 exists and

equals

⎡

⎣
7 −3 0

−2 1 0
−5 2 1

⎤

⎦ .

1.6 LU Factorization

This section discusses the LU and PLU factorizations of a matrix that arise naturally when Gaussian
Elimination is done. Several other factorizations are widely used for real and complex matrices, such as
the QR, Singular Value, and Cholesky Factorizations. (See Chapter 5 and Chapter 38.) Throughout this
section, F will denote a field and A will denote a matrix over F . The material in this section and additional
background can be found in [GV96, Sec. 3.2].

Definitions:

Let A be a matrix of any shape.
An LU factorization, or triangular factorization, of A is a factorization A = LU where L is a square

unit lower triangular matrix and U is upper triangular. A PLU factorization of A is a factorization of
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the form PA = LU where P is a permutation matrix, L is square unit lower triangular, and U is upper
triangular. An LDU factorization of A is a factorization A = LDU where L is a square unit lower triangular
matrix, D is a square diagonal matrix, and U is a unit upper triangular matrix.

A PLDU factorization of A is a factorization PA = LDU where P is a permutation matrix, L is a square
unit lower triangular matrix, D is a square diagonal matrix, and U is a unit upper triangular matrix.

Facts: [GV96, Sec. 3.2]

1. Let A be square. If each leading principal submatrix of A, except possibly A itself, is invertible,
then A has an LU factorization. When A is invertible, A has an LU factorization if and only if each
leading principal submatrix of A is invertible; in this case, the LU factorization is unique and there
is also a unique LDU factorization of A.

2. Any matrix A has a PLU factorization. Algorithm 1 (Section 1.3) performs the addition of multiples
of pivot rows to lower rows and perhaps row exchanges to obtain an REF matrix U. If instead, the
same series of row exchanges are done to A before any pivoting, this creates PA where P is a
permutation matrix, and then PA can be reduced to U without row exchanges. That is, there exist
unit lower triangular matrices E j such that E k . . . E 1(PA) = U. It follows that PA = LU , where
L = (E k . . . E 1)−1 is unit lower triangular and U is upper triangular.

3. In most professional software packages, the standard method for solving a square linear system
Ax = b, for which A is invertible, is to reduce A to an REF matrix U as in Fact 2 above, choosing row
exchanges by a strategy to reduce pivot size. By keeping track of the exchanges and pivot operations
done, this produces a PLU factorization of A. Then A = P T LU and P T LU x = b is the equation to
be solved. Using forward substitution, P T L y = b can be solved quickly for y, and then U x = y can
either be solved quickly for x by back substitutution, or be seen to be inconsistent. This method
gives accurate results for most problems. There are other types of solution methods that can work
more accurately or efficiently for special types of matrices. (See Chapter 7.)

Examples:

1. Calculate a PLU factorization for A =

⎡

⎢
⎢
⎣

1 1 2 3
−1 −1 −3 1

0 1 1 1
−1 0 −1 1

⎤

⎥
⎥
⎦. If Gaussian Elimination is performed

on A, after adding row 1 to rows 2 and 4, rows 2 and 3 must be exchanged and the final result is

U = E 3PE2 E 1 A =

⎡

⎢
⎢
⎣

1 1 2 3
0 1 1 1
0 0 −1 4
0 0 0 3

⎤

⎥
⎥
⎦ where E 1, E 2, and E 3 are lower triangular unit matrices and

P is a permutation matrix. This will not yield an LU factorization of A. But if the row exchange

is done to A first, by multiplying A by P =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦, one gets PA =

⎡

⎢
⎢
⎣

1 1 2 3
0 1 1 1

−1 −1 −3 1
−1 0 −1 1

⎤

⎥
⎥
⎦;

then Gaussian Elimination can proceed without any row exchanges. Add row 1 to rows 3 and 4 to get

F2 F1PA =

⎡

⎢
⎢
⎣

1 1 2 3
0 1 1 1
0 0 −1 4
0 1 1 4

⎤

⎥
⎥
⎦ where F1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ and F2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎤

⎥
⎥
⎦. Then add

(−1)(row 2) to row 4 to get U = F3 F2 F1 PA =

⎡

⎢
⎢
⎣

1 1 2 3
0 1 1 1
0 0 −1 4
0 0 0 3

⎤

⎥
⎥
⎦, where F3 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

⎤

⎥
⎥
⎦.
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Note that U is the same upper triangular matrix as before. Finally, L = (F3 F2 F1)−1 is unit lower
triangular and PA = LU is true, so this is a PLU factorization of A. To get a PLDU factorization,

use the same P and L , and define D =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 3

⎤

⎥
⎥
⎦ and U =

⎡

⎢
⎢
⎣

1 1 2 3
0 1 1 1
0 0 1 −4
0 0 0 1

⎤

⎥
⎥
⎦.

2. Let A = LU =
⎡

⎣
1 3 4

−1 −1 −5
2 12 3

⎤

⎦ . Each leading principal submatrix of A is invertible so A has

both LU and LDU factorizations:

A = LU =
⎡

⎣
1 0 0

−1 1 0
2 3 1

⎤

⎦

⎡

⎣
1 3 4
0 2 −1
0 0 −2

⎤

⎦. This yields an LDU factorization of A,

⎡

⎣
1 0 0

−1 1 0
2 3 1

⎤

⎦

⎡

⎣
1 0 0
0 2 0
0 0 −2

⎤

⎦

⎡

⎣
1 3 4
0 1 −0.5
0 0 1

⎤

⎦. With the LU factorization, an equation such as Ax =
⎡

⎣
1
1
0

⎤

⎦ can be solved efficiently

as follows. Use forward substitution to solve L y =
⎡

⎣
1
1
0

⎤

⎦, getting y =
⎡

⎣
1
2

−8

⎤

⎦, and then backward

substitution to solve U x = y, getting x =
⎡

⎣
−24

3
4

⎤

⎦.

3. Any invertible matrix whose (1, 1) entry is zero, such as

[
0 1
1 0

]

or

⎡

⎣
0 −1 5
1 1 1
1 0 3

⎤

⎦, does not have

an LU factorization.

4. The matrix A =
⎡

⎣
1 3 4

−1 −3 −5
2 6 6

⎤

⎦ is not invertible, nor is its leading principal 2 × 2 submatrix,

but it does have an LU factorization: A = LU =
⎡

⎣
1 0 0

−1 1 0
2 3 1

⎤

⎦

⎡

⎣
1 3 4
0 0 −1
0 0 1

⎤

⎦. To find out if an

equation such as Ax =
⎡

⎣
1
1
0

⎤

⎦ is consistent, notice L y =
⎡

⎣
1
1
0

⎤

⎦ yields y =
⎡

⎣
1
2

−8

⎤

⎦, but U x = y is

inconsistent, hence Ax =
⎡

⎣
1
1
0

⎤

⎦ has no solution.

5. The matrix A =
⎡

⎣
0 −1 5
1 1 1
1 0 2

⎤

⎦ has no LU factorization, but does have a PLU factorization with

P =
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ , L =
⎡

⎣
1 0 0
0 1 0
1 1 1

⎤

⎦, and U =
⎡

⎣
1 1 1
0 −1 5
0 0 −4

⎤

⎦ .
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